Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Vet Res ; 55(1): 52, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622656

RESUMO

Clostridium perfringens (C. perfringens) infection is recognized as one of the most challenging issues threatening food safety and perplexing agricultural development. To date, the molecular mechanisms of the interactions between C. perfringens and the host remain poorly understood. Here, we show that stimulator of interferon genes (STING)-dependent trained immunity protected against C. perfringens infection through mTOR signaling. Heat-killed Candida albicans (HKCA) training elicited elevated TNF-α and IL-6 production after LPS restimulation in mouse peritoneal macrophages (PM). Although HKCA-trained PM produced decreased levels of TNF-α and IL-6, the importance of trained immunity was demonstrated by the fact that HKCA training resulted in enhanced bacterial phagocytic ability and clearance in vivo and in vitro during C. perfringens infection. Interestingly, HKCA training resulted in the activation of STING signaling. We further demonstrate that STING agonist DMXAA is a strong inducer of trained immunity and conferred host resistance to C. perfringens infection in PM. Importantly, corresponding to higher bacterial burden, reduction in cytokine secretion, phagocytosis, and bacterial killing were shown in the absence of STING after HKCA training. Meanwhile, the high expression levels of AKT/mTOR/HIF1α were indeed accompanied by an activated STING signaling under HKCA or DMXAA training. Moreover, inhibiting mTOR signaling with rapamycin dampened the trained response to LPS and C. perfringens challenge in wild-type (WT) PM after HKCA training. Furthermore, STING­deficient PM presented decreased levels of mTOR signaling-related proteins. Altogether, these results support STING involvement in trained immunity which protects against C. perfringens infection via mTOR signaling.


Assuntos
Infecções por Clostridium , Animais , Camundongos , Infecções por Clostridium/veterinária , Clostridium perfringens , Interleucina-6 , Lipopolissacarídeos , Serina-Treonina Quinases TOR , Imunidade Treinada , Fator de Necrose Tumoral alfa/metabolismo
2.
PLoS Pathog ; 20(1): e1011918, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241414

RESUMO

Bacterial persister cells, a sub-population of dormant phenotypic variants highly tolerant to antibiotics, present a significant challenge for infection control. Investigating the mechanisms of antibiotic persistence is crucial for developing effective treatment strategies. Here, we found a significant association between tolerance frequency and previous infection history in bovine mastitis. Previous S. aureus infection led to S. aureus tolerance to killing by rifampicin in subsequent infection in vivo and in vitro. Actually, the activation of trained immunity contributed to rifampicin persistence of S. aureus in secondary infection, where it reduced the effectiveness of antibiotic treatment and increased disease severity. Mechanically, we found that S. aureus persistence was mediated by the accumulation of fumarate provoked by trained immunity. Combination therapy with metformin and rifampicin promoted eradication of persisters and improved the severity of recurrent S. aureus infection. These findings provide mechanistic insight into the relationship between trained immunity and S. aureus persistence, while providing proof of concept that trained immunity is a therapeutic target in recurrent bacterial infections involving persistent pathogens.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Feminino , Bovinos , Staphylococcus aureus/fisiologia , Rifampina/farmacologia , Rifampina/uso terapêutico , Imunidade Treinada , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Bactérias
3.
J Basic Microbiol ; 54(8): 866-72, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23775861

RESUMO

The effects of the fermentation conditions on both the biomass yield and the organic selenium yield of Thelephora ganbajun zang were studied. The components most suitable for the submerged fermentation medium were examined using the orthogonal array method; they comprised sucrose at 30 g L(-1) , carbamide 1 g L(-1) , corn steep liquor 8 g L(-1) , MgSO4 ·7H2 O 0.3 g L(-1) , KH2 PO4 0.5 g L(-1) , and NaCl 5 g L(-1) . The optimum cultivation conditions that resulted in maximal biomass yield were obtained using the response surface methodology (RSM). The conditions were as follows: initial pH, 5.84; temperature, 26.16 °C; and rotation speed, 170 rpm. Feeding sucrose led to a higher biomass yield, with a maximum of 21.20 g L(-1) . The biomass yield and the organic Se yield of T. ganbajun could reach 10.8 g L(-1) and 3256.07 mg kg(-1) , respectively, in a culture medium supplemented with 200 mg L(-1) sodium selenite (Na2 SeO3 ), which was added to the medium at 36 h after inoculation. Application of the orthogonal array method and RSM gave rise to a significant enhancement in the biomass yield of T. ganbajun. The results of these experiments indicate that T. ganbajun is a promising microorganism for selenium enrichment.


Assuntos
Agaricales/crescimento & desenvolvimento , Agaricales/metabolismo , Fermentação , Agricultura , Biomassa , Meios de Cultura , Selênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA